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Abstract

This paper deals with a quantitative nondestructive evaluation in eddy current testing for steam generator tubes of nuclear power plants

by using genetic programming (GP) and fuzzy inference system. Defects can be detected as a probe impedance trajectory by scanning a

pancake type probe coil. An inference system is proposed for identifying the defect shape inside and/or outside tubes. GP is applied to

extract and select effective features from a probe impedance trajectory. Using the extracted features, a fuzzy inference system detects

presence, position, and size of a defect of test sample. The effectiveness of the proposed method is demonstrated through computer

simulation studies. # 2001 Elsevier Science B.V. All rights reserved.
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1. Introduction

Recently, there has been growing interest of quantitative

nondestructive evaluation of material structure used in

nuclear power systems. The structural integrity of steam

generator tubes of the power plant has a critical issue on

safety and trustability of the system. To this end, many

efforts on QNDE are focused into the software develop-

ments using advanced ECT (eddy current testing) technol-

ogy [1]. The developments based on inverse analysis are one

successful approach for QNDE techniques [2±4]. These

methods involve an attempt to characterize structural ¯aws

that might not be detectable by visual inspection. Although

those techniques provide very accurate defect information,

tremendous computational costs are required. In fact, com-

putational methods are indispensable to detect material

¯aws arising in thousands of heat exchanger tubes of steam

generators in short time. Soft Computing is a feasible

technique for reducing the computational cost mentioned

above. Soft computing proposed by Zadeh [5,6] is a new

concept for information processing and its objective is to

realize a new approach for analyzing and creating ¯exible

information processing of human being such as sensing,

understanding, learning, recognizing and thinking. Soft

computing includes fuzzy computing, neural computing,

and evolutionary computing. While neural computing simu-

lates physiological features of human brain, fuzzy comput-

ing simulates include fuzzy computing, neural computing,

and evolutionary computing. While neural computing simu-

lates physiological features of human brain, fuzzy comput-

ing simulates psychological features of human brain. Fuzzy

computing basically deals with human linguistic representa-

tions and therefore fuzzy inference system (FS) can be

constructed by human knowledge within a speci®c domain.

In this way, fuzzy inference has an advantage of the easy

introduction of human knowledge. In fact, human knowl-

edge is used in monitoring systems of the nuclear plants, but

it is very dif®cult to extract important or meaningful infor-

mation from the measured data in the monitoring systems.

Therefore, we propose an FS with an automatic feature

extraction mechanism. Genetic programming (GP) that

automatically generates functions is applied to extract and

select effective features from the measured data. The fea-

tures are used as input data into the FS. In this paper, we

apply the proposed method to identify the defect shape from

the probe impedance trajectory.

2. GP-based FS

Input information of an inference system is often trans-

lated into qualitative information by human operators. In this
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paper, we propose an inference system with translation

preprocessing. The preprocessing includes feature extrac-

tion and feature selection. To build a well-performed infer-

ence system, the preprocessing is very important because the

translated information differentiates an output from the

other outputs. By using soft computing methods, there might

be three different procedures for the preprocessing [7]:

1. GP� NN �FS�;
2. GA� NN �FS�; and

3. GP �GA� � NN �FS� � GP, etc.

Basically neural network (NN) or FS is used as the

inference system. For case 1, the GP plays the role of feature

extraction, i.e., the GP translates a set of given raw data into

meaningful data. For case 2, the genetic algorithm (GA)

plays the role of feature selection, i.e., the GA fundamentally

reduces input dimensions to the inference system (NN, or

FS). In case 3, the last GP plays the role of post-processing.

In this way, the coevolution (cooptimization) of GP

(GA) and FS (NN) is used to generate well-performed

inference systems. In this paper, we adopt the system of

GP �GA� � FS as shown in Fig. 1. The GP (GA) extracts and

selects effective features from the measured data and FS

makes the shape data from the extracted information.

2.1. GP for feature extraction and selection

Evolutionary computation is a ®eld of simulating evolu-

tion on a computer. From the historical point of view, the

evolutionary optimization methods can be divided into three

main categories, GA, evolutionary programming and evolu-

tion strategy [8±10]. These methods are fundamentally

iterative generation and alternation processes operating on

a set of candidate solutions, which is called a population. All

the population evolves toward better candidate solutions by

selection operation and genetic operators such as crossover

and mutation. The selection decides candidate solutions into

the next generation, which reduces the search space spanned

by the candidate solutions. It is experimentally known that

the GAs can obtain near or approximately optimal solutions

with less computational cost. GP is an extension of GA using

a structural coding method. GP proposed by Koza [9,10] can

deal with the tree structure and have been applied for

generating computer programs. Next, we describe how to

apply GP for the feature extraction. A candidate solution of

functions is composed of binary operator, unary operator,

variables, and constants. Here a function is represented by

the post®x notation. Fig. 2 shows an example of a function

represented by the post®x notation. Using the post®x nota-

tion, we can deal with one-dimensional array of string. Fig. 3

illustrates a candidate solution representing multiple func-

tions. The candidate solution includes validity parameters

for the feature selection and functions for the feature extrac-

tion. The combination of functions is determined by the

validity of each function. This representation of candidate

solutions realizes the optimization of feature extraction and

selection at the same time. A population is composed of

candidate solutions and evolves through genetic operators

and selection. In the next step, genetic operators generate

new candidate solutions. Crossover exchanges the combina-

tion of functions and subtrees and between two candidate

solutions. Fig. 3 shows an example of subtree-based cross-

over acting on functions. The crossover randomly ®nds

subtrees and exchanges them between two candidate solu-

tions. In this optimization problem, two types of mutations

can be used for the search. The ®rst one is to change the

validity parameters for functions and symbols used in

functions. A validity parameter is changed with the other

symbol. The unary (binary) operator is replaced with the

other unary (binary) operator. The other is to exchange the

structure of function by replacement.

2.2. Fuzzy inference for identi®cation of crack shapes

Fuzzy theory provides us the linguistic representation

such as `slow' and `fast'. Fuzzy theory [5,6] expresses a

degree of truth, which is represented as a grade of a member-

ship function. The fuzzy logic is a powerful tool for non-

statistic and ill-de®ned structure. FS is based on the concept

of fuzzy set theory, fuzzy if±then rule, and fuzzy reasoning.

The fuzzy reasoning derives conclusions from a set of fuzzy

Fig. 1. GP-based FS.

Fig. 2. A syntax tree based on post®x notation.

Fig. 3. A candidate solution including multiple functions.
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if±then rules. FS implements mapping from the input space

to the output space by a number of fuzzy if±then rules. In this

paper, we use a simpli®ed fuzzy inference method for

identi®cation of crack shapes. In general, a fuzzy if±then

rule using the simpli®ed fuzzy inference method is described

as follows:

IF u1 is Ai;1 and . . . and uj is Ai;j and . . . and un is Ai;n

THEN y1 is w1
i . . . and yj is wr

i and . . . and ys is ws
i

where Ai;j is a membership function for the jth input of the

ith rule, wr
i a singleton for the rth output of the ith rule, and n

and s the numbers of inputs and outputs, respectively. A set

of input data is described as {u} in the following:

fug � T � fDZdg�q� (1)

where T is a function generated by GP. The activation degree

of the ith rule (i � 1; 2; . . . ; n) is calculated by

mi�u� �
Yn

j�1

mi;j�i;k��ui� (2)

Next, we obtain the rth resulting output (r � 1; 2; . . . ; s) by

weighted average as follows:

q̂r�u� �
Pmn

k�1mk�u�wr
kPmn

k�1mk�u�
(3)

This simpli®ed FS can be regarded as an adaptive fuzzy NN

[6]. When qr is the target output, the error function is de®ned

as

E�w� � 1

2

Xs

r�1

jqr ÿ q̂r�u; wr�j2 (4)

When the condition parts (membership functions) are ®xed,

we can easily train the output, wr
i , of the kth rule according to

the following delta rule based on the error function:

wr
k�t � 1� � wr

k�t� ÿ t
@E

@wr
k

����
wr

k
�wr

k
�t�

(5)

@E

@wr
k

� @E

@qr

@qr

@wr
k

� ÿ�qr ÿ q̂r�u; w�� mk�u�Pmn

k�1mk�u�
(6)

wr
k�t � 1� � wr

k�t� � t
mk�u�Pmn

k�1mk�u�
dr�t� (7)

Fig. 4 illustrates the total architecture of GP-based FS for the

identi®cation of crack shape. The objective is to ®nd an FS

that minimizes errors between the target outputs and the

inference results, while simultaneously reducing input

dimensions to FS. In addition, the functions generated by

GP are indirectly evaluated through the error function of FS.

Consequently, if the generated functions can extract features

for the crack identi®cation well, FS can be well trained by

the delta rule. Therefore, the evaluation function of GP

consists of the error function E, the number of the generated

functions, and the length of candidate solution as follows:

fit�W1E �W2ni �W3Li; Li �
Xm

j�1

fval i;j; fval i;j � f0; 1g

(8)

where fval_i,j is a validity of the jth function of the ith

candidate solution, Li the gene length of the candidate

solution, and W1, W2, and W3 the weight coef®cients. The

evolution of candidate solutions depends on the combination

of genetic operators and selection mechanism. We apply a

steady-state genetic algorithm (SSGA). In SSGA, only a few

existing solutions are replaced by new candidate solutions

generated by genetic operators in each generation [11].

Generally, the worst candidate solutions are eliminated.

Since the objective of the above evaluation function is

minimization, the candidate solution with the maximal value

(i.e., the greatest error) is eliminated in the selection.

3. Computational experiments

The material properties of inspected specimen and experi-

mental conditions are referred from [2]. The problem treated

Fig. 4. A block diagram of fuzzy learning mechanism with functions (T) generated by GP.
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here is to characterize crack depth inside and/or outside

sample materials. Fig. 5 depicts the overall con®guration of

the ECT considered here. For the ECT model in Fig. 4, we

use the hybrid FEM±BEM scheme based on A±f method

[4]. Table 1 shows the genotype used in GP. The number of

candidate solutions is 150. The maximal length of a candi-

date solution is 600. The number of membership functions

and shape information (outputs from FS) are 3 and 6,

respectively. The number of teaching and testing data are

taken as 30 and 4, respectively. Fig. 6 shows inference

results for testing data where we used FS after 1000 gen-

erations (150 000 evaluations). In the ®gure, the black line

indicates the inference results. The inference results show

that the obtained FS can identify the crack shape of the

testing data. Fig. 7 shows the learning curve of FS by the

delta rule. Since the error is decreased by delta rule, the

extracted features by GP are important for FS to learn the

inference rules. Fig. 8 illustrates the scanning trajectory of

the pancake-coil for the case of oblique scanning directions

(y � 1; . . . ; 4). Fig. 9 shows the scanning process for the

Fig. 5. Sample material and measurement method.

Table 1

Genotype and operators

Genotype Operators

1 � (binary operator)

2 ÿ (binary operator)

3 � (binary operator)

4 max (binary operator)

5 min (binary operator)

6 sin (unary operator)

7 cos (unary operator)

Fig. 6. Inference results for testing data of obtained GP-based FS.

Fig. 7. Learning curve of FS by delta rule.

Fig. 8. Experimental example A.

Fig. 9. Experimental example B.

Fig. 10. Inference results for testing data of the obtained GP-based FS

(example A).
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case of the parallel scanning direction from the crack

(Xm � 0:1; . . . ; 0:4 (mm)). Here the ¯at data of crack shape

were used as testing data. Figs. 10 and 11 show simulation

results of testing data.
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